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Abstract

We will discuss the uses of stochastic simulation modeling, follow Gillespie’s
derivation of his algorithm, and look at a few example biological systems.
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Introduction

“... biological systems are characterised by their regulatory and adaptive
properties, from homeostatic mechanisms which maintain constant output

levels to switching between alternative substrates or developmental pathways.
Regulatory mechanisms including thresholds, allosteric interactions and

feedback in gene transcription networks, metabolic pathways, signal
transduction and intercellular interactions are defining biological

characteristics - almost everything that happens in life boils down to
enzyme-catalysed reactions.”

- Crampin and Schnell, Prog. Biophys. Mol. Biol. (2004).

“... stochasticity is evident in all biological processes. The proliferation of both
noise and noise reduction is a hallmark of organismal evolution.”

- Fedoroff and Fontana, Science (2002).
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Modeling Approaches
- Turner et al., Comp. Bio. Chem. (2004).

? Directed graphs in which molecules are vertices and the reactions are the
edges;

? Bayesian networks in which the vertices correspond to random variables
that describe, for example, a gene expression while the network defines a
joint probability density function;

? Boolean networks in which a biological object is either in an on or off state;

? Ordinary differential equations (ODEs) in which chemical kinetics rate
equations are used to represent protein concentrations;

? Partial differential equations (PDEs) in which the spatial structure of cells
are taken into account; and finally

? Stochastic differential equations (SDEs) in which we have to resolve the
issue of whether we work with concentrations or with individual molecules
through continuous or discrete models.
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Where does stochastic simulation fit in?

Three types of modeling regimes: discrete and stochastic, continuous and
stochastic, and continuous and deterministic regimes.

? Deterministic: the law of mass action.

? Stochastic: the chemical master equation.

- Turner et al., Comp. Bio. Chem. (2004).

Deterministic models are the infinite volume limit of the Markov chain models.

- Kurtz, J. Chem. Phys. (1972).
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P (X, t).

If there are M different reactions (events) then we have

P (X, t + dt) = P (X, t)

1−
M∑

µ=1

aµdt

 +
M∑

µ=1

Bµdt,

which we rewrite as

∂

∂t
P (X, t) =

M∑
µ=1

[Bµ − aµP (X, t)]

where aµdt is the probability that reaction µ will occur in (t, t + dt) given that
the system is in state X at time t and Bµdt is the probability that the system
will go from being one reaction µ away from X at time t to X in (t, t + dt).
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Random Walk on an N -Dimensional Grid

So if we have a system with only 3 molecular species (R, L, and T ), we model
it as a Markov jump process where the system is doing a random walk on a
3-dimensional grid.

(R,L,T)

(R,L,T−1)

(R,L,T+1)

(R−1,L,T) (R+1,L,T)

(R,L+1,T)

(R,L−1,T)



MBJC 9

The Reaction Probability Density Function

So we ask: “When will the next event occur and what type of event will it be?”



MBJC 9

The Reaction Probability Density Function

So we ask: “When will the next event occur and what type of event will it be?”

Define

P (τ, µ)dτ ≡probability at time t that the next event will occur

in the differential time interval (t + τ, t + τ + dτ)

and will be a type µ event,

where 0 ≤ τ <∞ and µ simply indicates what type of event occurs.



MBJC 9

The Reaction Probability Density Function

So we ask: “When will the next event occur and what type of event will it be?”

Define

P (τ, µ)dτ ≡probability at time t that the next event will occur

in the differential time interval (t + τ, t + τ + dτ)

and will be a type µ event,

where 0 ≤ τ <∞ and µ simply indicates what type of event occurs.

This joint probability density function can be written as

P (τ, µ)dτ = P0(τ)aµdτ

where P0(τ) is the probability that no event occurs in the time interval (t, t + τ)
and aµdτ is the probability that event µ occurs in the interval (t + τ, t + τ + dτ).
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The probability that no event occurs:

Let

a0 =
M∑
i=1

ai

then we have
P0(t + dt) = P0(t)(1− a0dt)

or, rearranging a little, we have

P0(t + dt)− P0(t)
dt

= −a0P0(t)

from which it is easily deduced that

P0(t) = e−a0t.
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The Reaction Probability Density Function

So we have

P (τ, µ)dτ = P0(τ)aµdτ

= e−a0τaµdτ

= a0e
−a0τ

(
aµ

a0

)
dτ

= P (τ)P (µ)dτ

where
P (µ) =

aµ

a0

and
P (τ) = a0e

−a0τ .
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Schematic of the Density Function

Gillespie, J. Comp. Phys. (1976).
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The Probability Distribution Function

F (x) ≡
∫ x

−∞
P (x′)dx′

To generate a random value x according to a given density function P (x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take x such that

F (x) = r or x = F−1(r)

since
F (x′ + dx′)− F (x′) = F ′(x′)dx′ = P (x′)dx′.
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Our Distribution Functions
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Our Distribution Functions

P (τ) = a0e
−a0τ −→ F (τ) = 1− e−a0τ

P (µ) =
aµ

a0
−→ F (µ) =

µ∑
k=1

P (k)

So choose r1 and r2 from uniform distribution in the unit interval and

τ =
1
a0

ln
(

1
r1

)
µ−1∑
k=1

ak

a0
< r2 ≤

µ∑
k=1

ak

a0
.
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A Stochastic Simulation
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0 500 1000 1500
0

50

100

150

200

250

# of T molecules

# 
of

 L
H

 m
ol

ec
ul

es

0 500 1000 1500
0

50

100

150

200

250

300

350

# of T molecules

# 
of

 G
nR

H
 m

ol
ec

ul
es

0 50 100 150 200 250
0

50

100

150

200

250

300

350

# of LH molecules

# 
of

 G
nR

H
 m

ol
ec

ul
es

0
100

200
300

0
100

200

0

500

1000

1500

# of GnRH molecules
# of LH molecules

# 
of

 T
 m

ol
ec

ul
es



MBJC 18

Outline

? Introduction: Where does stochastic simulation fit in?

? Follow Gillespie’s derivation of the algorithm.

? Look at some examples.

? Discuss what others have done to enhance the Gillespie algorithm to speed
up computations or to include more information.

? Conclusions and Questions.



MBJC 19

Improvements...

? Bortz, Kalos, and Lebowitz, J. Comp. Phys. (1975). - Speed up
computations for Ising spin systems by accounting for priori probability of
changing spins before, rather than after, choosing the spin or spins to
change.

? Turner, Schnell, and Burrage, Comp. Bio. Chem. (2004). - Include
fluctuations caused by the structural organisation of the cytoplasm and the
limited diffusion of molecules due to macromolecular crowding.

? Burrage, Tian, and Burrage, Prog. Biophys. Mol. Biol. (2004). - Use
multi-scale methods to incorporate the quasi-steady-state assumption with
slow, intermediate, and fast reactions.
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Conclusions

? Stochastic effects are important in biological processes.

? The Gillespie algorithm is a method for simulating stochastic processes.

? This algorithm is easy to implement.

? There may be ways to improve computational speeds or to incorporate
additional stochastic effects for a particular system.
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